ST6C

Exc IEEE ST6C model

This article is incomplete, some sections must be written.

Context

This voltage regulator model first appeared in the IEEE Std 421.5-2016 (of Electrical & Engineers, 2016). It has been reproduced identically in the IEC 61970-302:2024 version (Commission, 2024). In the previous standard version (2005), its predecessor model was called ST6B. Compared to ST6B, ST6C has additional options for connecting OEL and UEL inputs and an additional block with time constant tA.

Model use, assumptions, validity domain and limitations

To be completed

Model inputs and output

The input variables are :

Variable Description Units
IrPu rotor current pu (base SNom, user-selected base voltage)
itPu complex current at the terminal pu (base SNom, UNom)
UsPu measured stator voltage pu (base UNom)
UsRefPu reference stator voltage pu (base UNom)
utPu complex voltage at the terminal pu (base UNom)
UOelPu (optional) output voltage of overexcitation limiter pu (base UNom)
UPssPu (optional) output voltage of power system stabilizer pu (base UNom)
USclOelPu (optional) output voltage of stator current overexcitation limiter pu (base UNom)
USclUelPu (optional) output voltage of stator current underexcitation limiter pu (base UNom)
UUelPu (optional) output voltage of underexcitation limiter pu (base UNom)

The output signal is EfdPu, the excitation voltage in pu (user-selected base voltage).

Model parameters

Parameter Description Units
IlrPu Exciter output current limit reference pu (base SNom, user-selected base voltage)
Kc Rectifier loading factor proportional to commutating reactance, pu
Kcl Field current limiter conversion factor pu
Kff Feedforward gain of inner loop field regulator pu
Kg Feedback gain constant of inner loop field regulator pu
Ki Potential circuit (current) gain coefficient pu
Kia Integral gain of PI pu
Klr Gain of field current limiter pu
Km Gain of error of inner loop field regulator pu
Kp Potential circuit gain pu
Kpa Proportional gain of PI pu
PositionOel Input location : (0) none, (1) voltage error summation, (2) take-over at AVR input, (3) AVR input summation, (4) take-over at AVR output -
PositionScl Input location : (0) none, (1) voltage error summation, (2) take-over at AVR input, (3) AVR input summation, (4) take-over at AVR output -
PositionUel Input location : (0) none, (1) voltage error summation, (2) take-over at AVR input, (3) AVR input summation, (4) take-over at AVR output -
Sw1 If true, power source derived from terminal voltage, if false, independent from terminal voltage -
tA Voltage regulator time constant s
tG Feedback time constant of inner loop field regulator s
Thetap Potential circuit phase angle rad
tR Stator voltage filter time constant s
VaMaxPu Maximum output voltage of limited first order pu (user-selected base voltage)
VaMinPu Minimum output voltage of limited first order pu (user-selected base voltage)
VbMaxPu Maximum available exciter field voltage pu (base UNom)
VmMaxPu Maximum output voltage of second PI pu (user-selected base voltage)
VmMinPu Minimum output voltage of second PI pu (user-selected base voltage)
VrMaxPu Maximum output voltage of first PI pu (user-selected base voltage)
VrMinPu Minimum output voltage of first PI pu (user-selected base voltage)
XlPu Reactance associated with potential source pu (base SNom, UNom)

Model diagram

ST6C diagram

Model variant

In the ST6B model :

  • the voltage from the underexcitation limiter is applied at the AVR input
  • there is no stator current limiter
  • the power source is derived from terminal voltage, with no reactance
  • there is no first order filter on the feedback signal of the inner loop field regulator

Open source implementations

This model has been successfully implemented in :

Software URL Language Open-Source License Last consulted date Comments
Dynawo Link Modelica MPL v2.0 24/05/2024  

References

  1. of Electrical, T. I., & Engineers, E. (2016). IEEE recommended practice for excitation system models for power system stability studies . IEEE Std 421.5-2016. https://home.engineering.iastate.edu/ jdm/ee554/IEEEstd421.5-2016RecPracExSysModsPwrSysStabStudies.pdf
  2. Commission, I. E. (2024). Energy management system application program interface (EMS-API) Part 302: Common information model (CIM) dynamics. IEC 61970-302. https://webstore.iec.ch/preview/info_iec61970-302%7Bed2.0%7Db.pdf
Evaluate