ST4C

Exc IEEE ST4C model

This article is incomplete, some sections must be written.

Context

This voltage regulator model first appeared in the IEEE Std 421.5-2016 (of Electrical & Engineers, 2016). It has been reproduced identically in the IEC 61970-302:2024 version (Commission, 2024). In the previous standard version (2005), its predecessor model was called ST4B. Compared to ST4B, ST4C has additional options for connecting OEL and UEL inputs, an additional block with time constant tA and an additional time constant tG in the feedback path with gain Kg.

Model use, assumptions, validity domain and limitations

To be completed

Model inputs and output

The input variables are :

Variable Description Units
IrPu rotor current pu (base SNom, user-selected base voltage)
itPu complex current at the terminal pu (base SNom, UNom)
UsPu measured stator voltage pu (base UNom)
UsRefPu reference stator voltage pu (base UNom)
utPu complex voltage at the terminal pu (base UNom)
UOelPu (optional) output voltage of overexcitation limiter pu (base UNom)
UPssPu (optional) output voltage of power system stabilizer pu (base UNom)
USclOelPu (optional) output voltage of stator current overexcitation limiter pu (base UNom)
USclUelPu (optional) output voltage of stator current underexcitation limiter pu (base UNom)
UUelPu (optional) output voltage of underexcitation limiter pu (base UNom)

The output signal is EfdPu, the excitation voltage in pu (user-selected base voltage).

Model parameters

Parameter Description Units
Kc Rectifier loading factor proportional to commutating reactance, pu
Kg Feedback gain of inner loop field regulator pu
Ki Potential circuit (current) gain coefficient pu
Kim Integral gain of second PI pu
Kir Integral gain of first PI pu
Kp Potential circuit gain pu
Kpm Proportional gain of second PI pu
Kpr Proportional gain of first PI pu
PositionOel Input location : (0) none, (1) voltage error summation, (2) take-over at AVR input, (3) take-over at inner loop output -
PositionPss Input location : (0) none, (1) voltage error summation, (2) after take-over UEL -
PositionScl Input location : (0) none, (1) voltage error summation, (2) take-over at AVR input, (3) take-over at inner loop output -
PositionUel Input location : (0) none, (1) voltage error summation, (2) take-over at AVR input, (3) take-over at inner loop output -
Sw1 If true, power source derived from terminal voltage, if false, independent from terminal voltage -
tA Voltage regulator time constant s
tG Feedback time constant of inner loop field regulator s
Thetap Potential circuit phase angle rad
tR Stator voltage filter time constant s
VaMaxPu Maximum output voltage of limited first order pu (user-selected base voltage)
VaMinPu Minimum output voltage of limited first order pu (user-selected base voltage)
VbMaxPu Maximum available exciter field voltage pu (base UNom)
VgMaxPu Maximum feedback voltage of inner loop field regulator pu (user-selected base voltage)
VmMaxPu Maximum output voltage of second PI pu (user-selected base voltage)
VmMinPu Minimum output voltage of second PI pu (user-selected base voltage)
VrMaxPu Maximum output voltage of first PI pu (user-selected base voltage)
VrMinPu Minimum output voltage of first PI pu (user-selected base voltage)
XlPu Reactance associated with potential source pu (base SNom, UNom)

Model diagram

ST4C

Model variant

In the ST4B model :

  • the overexcitation limiter voltage is applied in the inner loop field regulator
  • the voltages from the underexcitation limiter and the power system stabilizer are added to the voltage error
  • there is no stator current limiter
  • the power source is derived from terminal voltage
  • there are no first order filter and no upper limit for the feedback signal of the inner loop field regulator

Open source implementations

This model has been successfully implemented in :

Software URL Language Open-Source License Last consulted date Comments
Dynawo Link Modelica MPL v2.0 24/05/2024  

References

  1. of Electrical, T. I., & Engineers, E. (2016). IEEE recommended practice for excitation system models for power system stability studies . IEEE Std 421.5-2016. https://home.engineering.iastate.edu/ jdm/ee554/IEEEstd421.5-2016RecPracExSysModsPwrSysStabStudies.pdf
  2. Commission, I. E. (2024). Energy management system application program interface (EMS-API) Part 302: Common information model (CIM) dynamics. IEC 61970-302. https://webstore.iec.ch/preview/info_iec61970-302%7Bed2.0%7Db.pdf
Evaluate