Integrator control block with (positive) time constant T and non-windup limits on output
Diagram
Syntax:
- function name: inlim
- input variable : \(x_i\)
- output variable: \(x_j\)
- data name, parameter name or math expression for \(x_{min}\)
- data name, parameter name or math expression for \(x_{max}\)
Internal states : none
Discrete variable : \(z \in \{-1,1\}\)
Equations
\[\left\{ \begin{array}{lll} T \dot{x_j} = x_i & if & z=0 \\ 0= x_j - x_{min} & if & z=-1 \\ 0 = x_j - x_{max} & if & z=1 \end{array} \right.\]Discrete transitions
if z = 0 then
if xj > xmax then
z ← 1
else if xj < xmin then
z ← −1
end if
else if z = 1 then
if xi < 0 then
z ← 0
end if
else if z = −1 then
if xi > 0 then
z ← 0
end if
end if
Initialisation of discrete variables
if xj > xmax then
z ← 1
else if xj < xmin then
z ← −1
else
z ← 0
end if
N.B. A zero value for \(T\) is not allowed. If too small a value is specified for \(T\), the solver may encounter a singularity and the simulation may not proceed.
Evaluate