Proportional integral (PI) controller with non-windup limit on the integral term and limit on the proportional term

Authors: Mathilde Bongrain

Diagram

pict2lim diagram

Syntax:

  • function name: pictl2lim
  • input variable : \(x_k\)
  • output variable: \(x_j\)
  • data name, parameter name or math expression for \(K_I\)
  • data name, parameter name or math expression for \(K_p\)
  • data name, parameter name or math expression for \(x_i^{min}\)
  • data name, parameter name or math expression for \(x_i^{max}\)
  • data name, parameter name or math expression for \(x_p^{min}\)
  • data name, parameter name or math expression for \(x_p^{max}\)

Internal states : variable \(x_i\) and \(x_p\)

Discrete variable : \(z_1 \in \{-1,0,1\}\) and \(z_2 \in \{-1,0,1\}\)

Equations

\[\left\{ \begin{array}{lll} 0 = K_p x_k - x_p & if & z_1=0 \\ 0= x_p - x_p^{min} & if & z_1=-1 \\ 0 = x_p - x_p^{max} & if & z_1=1 \end{array} \right.\] \[\left\{ \begin{array}{lll} \dot{x_i} = K_i x_k & if & z_2=0 \\ 0= x_i - x_i^{min} & if & z_2=-1 \\ 0 = x_i - x_i^{max} & if & z_2=1 \end{array} \right.\] \[0 = x_p + x_i - x_j\]

Discrete transitions


if z1 = 0 then
    if xp > xmaxp then
        z1 ← 1
    else if xp < xminp then
        z1 ← −1
    end if
else if z1 = 1 then
    if Kp*xk < xmaxp  then
        z1 ← 0
    end if
else if z1 = −1 then
    if Kp*xk > xminp  then
        z1 ← 0
    end if
end if
if z2 = 0 then
    if xi > xmaxi then
        z2 ← 1
    else if xi < xmini then
        z2 ← −1
    end if
else if z2 = 1 then
    if Ki*xk < 0 then
        z2 ← 0
    end if
else if z2 = −1 then
    if Ki*xk > 0 then
        z2 ← 0
    end if
end if

Initialization of internal state variables and discrete variables

Initialisation of the internal state \(x_p\): \(x_p = min( x_p^{max}, max(x_p^{min}, K_px_k) )\)

Initialisation of the internal \(x_i\) and the discrete variables:

if Kp*xk > xmaxp then
    z1 ← 1
else if Kp*xk < xminp then
    z1 ← −1
else
    z1 ← 0
end if
if Ki*xk > 0 then
    z2 ← 1
    xi ← xmaxi
else if Ki*xk < 0 then
    z2 ← −1
    xi ← xmini
else
    z2 ← 0
    xi ← xj − xp
end if
Evaluate